可见区八条新氯离子激光谱线的研究

钮吉尔 沈仲钧 邱明新 周政卓 (华东师范大学物理系) (上海激光技术研究所)

提 要

本文报导八条可见区象离子新激光谱线。 波长分别为441.48,459.62,460.18,477.11,477.89, 509.98,517.59,535.61 nm。实验表明,在工作物质氯化氢中掺入适量量对可见区象离子数光谱线有普遍的增强作用,并出现较多的新氯离子激光谱线。本文还对有关实验现象作了定性解释。

一、引 言

寻找新激光谱线,有些是在理论预言下进行实验而获得,例如氢分子激光……。但更多 的是直接由实验获得,例如氢激光等……。其方法有光泵激励、气动激励、电子束激励、脉冲 放电激励和化学激励。其中以光泵激励最有效,因为光子的共振吸收截面很大。光泵和电 子束激励虽最有效,但设备复杂,造价昂贵。本文采用轴向脉冲放电激励,因其装置简易,成 本低,激励有效,且受工作物质限制的因素少。

Cheo 和 Cooper⁽¹⁾, McFarlane⁽²⁾, Zarowin⁽³⁾等都发现了氯离子激光谱线, Jarrett 等⁽⁴⁾, Paananen^(5,6), Dauger 等⁽⁷⁾也分别获得一些氯原子激光作用。文献[5~7]对工作物质中附加氦、氖、氢的情况作了研究。本文报导以氯化氢为工作物质, 添入适量氩, 获得八条新的氯离子激光谱线。

二、实验方法和结果

本文采用轴向脉冲放电,激光参量与放电参量基本同文献[8]。激光管用 GG17 型玻璃 制成,毛细管长1m,内径4mm,熔石英布氏窗,外腔结构,用可见宽带氧化钛和氧化硅多 层介质膜反射镜,在4200~6400Å 波段反射率大于99%,曲率半径约2m,腔长1.68m。脉 冲放电储能电容为0.02μF,充电电压20kV,峰值电流1000A,重复频率约2pps。用 31WII型二米平面光栅光谱仪摄谱,由于激光器为外腔式结构,可利用非输出端插入一纸 片以摄取荧光谱线。在本实验中同样曝光条件下拍摄荧光谱线不感光,证明所得谱线为激 光谱线。该鉴别方法与文献[8]完全一样。光谱片上在激光二例分别拍摄铁谱线作为标准, 借以测得谱线波长。

表1给出可见波段研究中所得的 20 条氯激光谱线,根据 R. Beck 等^[12] 1980 年版的气体和蒸汽激光谱线表及近二年关于新激光谱线的报道情况,核对我们所得的谱线,发现有八条新激光谱线,即表中有"*"的为新的激光谱线。新激光谱线 441.50 和 459.61 nm 先用

收稿日期: 1981年11月12日

激光种类	邀 海 波 长	算得波长	跃迁能级	对应能量值	相对强度
*C1 111	441.50	441.48	4p1 2D3 2-3d1 2D3/2	217913.1-195268.2	很弱
*Cl III	459.61	459.62	4p1 2F0, 2-3d1 2Dx/2	216710.4194959.5	中
*Cl 111	460.81	460.82	4p1 2D0,2-3d1 2F7/2	217850.2-196155.8	中
Cl II	474.04	474.04	$4p^{11} P_1 - 3d^{11} D_2^0$	161348.4-140259.1	中
Cl 11	476.85	476.87	$4p^{11} \ ^{3}D_{2} - 4s^{11} \ ^{9}P_{1}^{0}$	158768.6-137804.4	很强
*CI II	477.09	477.10	4p ¹¹ 3D1-4s ¹¹ 3P0	158723.7-137770.1	强
*Cl II	477.91	477.89	$1p^{11} \ ^{3}D_{1} - 4s^{11} \ ^{3}P_{1}^{0}$	158723.7-137804.4	弱
CIII	478.12	478.13	$4p^{11} \ ^{3}D_{3} - 4s^{11} \ ^{3}P_{2}^{0}$	158786.4-137877.6	很强
Cl II	489.69	489.68	$4p^{1}$ $^{3}F_{4}$ - $4s^{1}$ $^{3}D_{3}^{0}$	147198.4-126782.8	强
Cl II	490.49	490.48	$4p^{1}$ ${}^{3}F_{3}$ $-4s^{1}$ ${}^{3}D_{2}^{0}$	147125.7 - 126743.3	强
CIII	491.78	491.77	$4p^{1}$ ${}^{3}F_{2}$ $-4s^{1}$ ${}^{3}D_{1}^{0}$	147053.7-126782.8	强
Cl 11	507.85	507.83	$4p^{1} {}^{3}D_{3} - 4s^{1} {}^{3}D_{3}^{0}$	146496.0-126782.8	中
*Cl 11	509.93	5 09.9 3	$4p^{1} {}^{3}D_{1} - 4s^{1} {}^{3}D_{1}^{0}$	146330.0-126725.1	中
Cl II	510.30	510.30	$4p^{1} {}^{3}D_{2} - 4s^{1} {}^{3}D_{2}^{0}$	146333.8-126743.3	中
*CI II	517.59	517.59	$4p^{11} D_2 - 3d^{11} D_2^0$	159574.2-140259.1	弱
Cl 11	521.78	521.79	$4p^{3}P_{2}-4s^{3}S_{1}^{0}$	131767.4-112608.0	强
CI II	522.12	522.1 3	$4p^{3}P_{1}$ - $4s^{3}S_{1}^{0}$	131754.8-112608.0	中
*Cl 11	535,61	-	-	-	中
СIП	539.20	539.21	$4p^{1} {}^{1}F_{3} - 4s^{1} {}^{1}D_{2}^{0}$	147605.7-129065.4	很强
CI II	609.44	609.46	$4p^{1} P_1 - 4s^{1} D_2^0$	146330.0-129065.4	很强

表1 氯离子激光谱线表(*为新的激光谱线) Table, 1 Table of Cl ion laser lines (*new laser lines)

Meggers-Peters¹⁹¹ 公式换算为真空波长 441.62 和 459.74 nm, 再根据文献[10] 和选择定则

图1 CIIII 激光跃迁图(*为新的激光谱线)

Fig. 1 Diagram of Cl III laser transitions (*new laser lines)

计算得到其对应的跃迁能级。 其余几条新激光谱线由文献 [11]得出其跃迁能级。波长为 535.61nm 的谱线被文献[11]注 明为CIII尚未分类的激光谱线。 图1和图2给出了这20条氯激 光谱线的跃迁能级图。

表中,已知激光谱线 OI II 521.78nm 在文献 [11] 中给出 两个可能跃迁: 4p3P2-4s3S1 和

4p³Po-4s³S₁⁰。对应能量值为: 131767.4 cm⁻¹~112608.0 cm⁻¹和 131768.0 cm⁻¹~ 112608.0 cm⁻¹。本文认为前者跃迁的可能性较大,因为能量较低,且符合 $\Delta J = \Delta L = +1$ 。 从以上的图和表可见:

(1) 所有的谱线均不存在原子核状态的变化。

(2) 所有的谱线均符合 Laporte 定则: 偶光谱项只与奇光谱项组合, 奇光谱项只与偶 光谱项组合。

(3) 所有激光跃迁都满足自旋守恒,说明对电子自旋和轨道运动间的相互作用可略。

(4) 十九条有确定能级的激光跃迁中,有十七条满足 L-S 耦合: $\Delta S = 0$, $\Delta J = \Delta L_{o}$ 且 最大趋向是 $\Delta L = \Delta J = +1$ (从表 2 可明显看出)。

(5)除 609.46 nm 这条激光谱线外,所有谱线强度均符合 Burger-Dorgelo-Ornstein 的总和定则导出的一般定则:在同一多重线内相对强度较大的是 4L = 4J 的那些跃迁,而 这些相对强度较大的谱线中又以 J 最大的为最强。这从表 3 可明显看出。

我们用 8BM10 型示波器、WDF-1 型单色仪、9558 光电倍增管分别测量了一些激光谱

表 2 获得激光跃迁 ΔS, ΔJ, ΔL 分布(数字表示谱线条数)

Table 2 ΔS , ΔJ , ΔL distribution of laser transitions

表3 激光谱线强度分布

Table 3 Intensity distribition of laser lines

	For an interimeter state of the local state of the														the second s						
$4p^{1} \ {}^{2}F^{0}$ $4p^{1} \ {}^{2}D^{0}$			² D ⁰				4p ¹¹ ³ D ¹			4			p ¹ 3F		4 ₽ ³ D						
		7/2	5/2	5/2	3/2				3	2		1				4	З	2	3	2	1
JE 1	5/2	0	0	0	0	1	1	0	0	0	,	强			1	ø	0	强	0	0	ф
3d	7/2	0	0	中	0		9 <i>1</i> .0			28		स्र		offe	2	 0		0	0		
(3D	3/2	0	0	0	很弱		4.811							4 s ¹							
3ď	5/2	中	0	ø	0		I	2	很强	1 0	, 	0			3	預	0	0	і ф	0	0
$4p^{11}F$ $4p^{11}$					F	$4k^{3}P$]		$4p^{11}P$ $4p^{1}$					۱D				
3				1					0	1	2]				1		2			
	451	11D0 2		很强 很强		4	\$ ³ S ⁰	1	0	中	强		3d11	D^{c}	2	ф		弱			

线的脉宽和放电脉宽。 测得新激光谱线 535.61 nm 和已知激光谱线 539.20 nm 的脉宽均 为 80 μs 左右, 而放电脉宽仅 8 μs。可见所得激光作用在放电余辉。在脉冲放电余辉, 电 子温度充分冷却,慢电子与离子经三体碰撞,复合引起激光上能级的激励,其反应如 下:

$$A^{(m+1)\dagger} + e + M \longrightarrow (A^{m\dagger})^* + M + \Delta E,$$

其中 ΔE 大部分变成 $(A^{m\dagger})^*$ 和 M 间的相对动能。

三、讨 论

1. 气压对激光输出的影响

实验表明,工作物质 气 压 对 谱 线 的 激 发 有 很 大 影 响。本 实 验 中 氯 化 氢 气 压 在 7×10⁻³ torr 左右能产生较强的激光振荡。随着气压的升高,电子自由程缩短,电子温度下 降,无法激励氯到应有的离子激发态。而气压过低又易造成低重态离子浓度降低,从而影响 激光振荡,甚至无法维持放电。故对不同的工作物质,不同的谱线存在一个最佳气压。

2. 输入能量对激光输出的影响

实验发现,输入能量并非越大越好,过大反使激光输出功率下降。其原因可能是由于输 入能量过高将导致高阶电离态较大幅度地增大,从而使激光上能级集居数减少所致。

3. 电感对激光输出的影响

实验指出,在不同的电感情况下谱线情况有很大差异。 放电回路中的电感值直接影响 放电脉宽和电流峰值,改变各重电离态浓度的分布情况,影响激光输出。

4. 氩对可见区氯激光输出的影响

实验发现在氯化氢中加入少量的氯可使氯谱线普遍增加,且出现较多的新谱线,而加入 适量氮或氖并没有发现这一现象。 氩原子的电离能是 128541.3 cm⁻¹, 分析所得激光跃迁 能级的能量值以及气压比为5:1,可能主要由于氩对氯激光下能级的消激励作用所致:

$$(\mathrm{Cl}^{+})^{*} + \mathrm{Ar} \longrightarrow \mathrm{Cl}^{++} + \mathrm{Ar}^{+} + \Delta E, \qquad (1)$$

$$(\mathrm{Cl}^{++})^* + \mathrm{Ar}^* \longrightarrow \mathrm{Cl}^{++} + (\mathrm{Ar}^+)^* + \Delta E_{o}$$

$$\tag{2}$$

图 3 激光能级图 Fig. 3 Laser energy level diagram 氩对489.68,490.48,491.77.507.83,509.93, 510.30 nm 波长的激光增强作用较明显, 可由 (1) 式得到解释。 从 (2) 式 显 见 Ar⁺ 有 助 于 Cl III 几条新激光谱线的产生。对剩余一些氯 离子激光谱线的影响看来主要是碰撞能量转移 所致。本文曾用下式

$$r = \frac{R + dn_1/dt}{R} \tag{3}$$

估算出消激发截面约为10⁻¹⁴ cm⁻²。该结果有 利于(1)、(2)式所示碰撞的进行。(3)式中 B 为

原消激发率, dn_1/dt 为由氢产生的消激发率, r 是加氢前后氯谱线的强度比, 由测微光度计 读出黑度后换算得之。

$$(Ar^+)^+ + \Delta E_{\circ}$$

由于所有激光谱线上能级电子态均为 p, 而 Ol II, Cl III 的离子基态及亚稳态的电子态 也是 p, 所以上能级与基态或亚稳态为禁戒组合, 而所有激光下能级电子态均为 s 或 d, 且 与基态及亚稳态有相反的宇称, 其它量子数也均满足偶极跃迁的选择定则, 所以激光下能级 与基态或亚稳态间有光学联系, 使激光下能级粒子寿命缩短。又因放电毛细管直径仅4mm, 工作物质气压仅 10⁻³~10⁻³ torr 量级, 跃迁发出的光子不易发生自陷, 有利于激光下能级 抽空, 建立粒子数反转。产生激光的能级系统如图 3 所示。

本文承华东师范大学物理系郑一善教授审阅且修改, 谨致谢忱。

参考文献

- [1] P. K. Cheo, H. G. Cooper; A. P. L., 1965, 7, No. 7 (1 Oct), 202.
- [2] R. A. McFarlane; Appl. Opt., 1964, 3, No. 10 (Oct), 1196.
- [3] C. B. Zarowin; A. P. L., 1966, 9, No. 6 (15 Sep), 241.
- [4] S. M. Jerrett et al.; A. P. L., 1966, 8, No. 6 (15 Mar), 150.
- [5] R. A. Paananen, F. A. Horrigan; Proc. IEEE, 1964, 52, No. 10 (Oct), 1261.
- [6] R. A. Paananen et al.; A. P. L., 1963, 3. No. 8 (15 Oct), 154.
- [7] A. B. Dauger, D. M. Stafsuold; IEEE J. Q. E., 1970, 6, No. 9 (Sep), 572.
- [8] M. S. Chiu, C. C. Cheo; IEEE J. Q. E., 1981, 17, No. 9 (Sep), 1592.
- [9] H. Kayser; Tablelle der Schuingungszahlen (Edwards Brothers Inc., Berlin, 1944)
- [10] C. E. Moore; Atomic Energy Levels (U. S. Department of Commerce NBS, Washington, 1971)
- [11] C. E. Moore; A Multiplet Table of Astophysical interest (revised edition) (U. S. Department of Commerce NBS, Washington, 1959)
- [12] R. Beck et al.; «Table of Laser Lines in Gases and Vapors», (Springer-Verlag, Berlin, Newe York, 1980)

Investigation of new laser lines of the chlorine ions in the visible region

NIU JIER SHEN ZHONGJUN

(Department of Physics, East China Normal University, Shanghai)

QIU MINGXIN AND ZHOU CHANGZHUO (Shanghai Institute of Laser Technology)

(Received 12 November 1981)

Abstract

Eight new laser lines of the chlorine ions in the visible region are reported in this paper and their wavelengths are 441.48, 459.62, 460.18, 477.11, 477.89, 509.93, 517.59 and 535.61 nm respectively.

The experimental results show that when an appropriote quantity of argon gas is mixed into the lasing medium of hydrogen chloride, the intensities of laser lines increase properly and more new lines can be observed. Some phenomena in our experiments are qualitatively explained as well.